

Additive Manufacturing for Construction Industry

Exploration of Stability of 3D-Printed Steel Members (For complete research, see TU Delft Repository)

Dag van de Constructeur

Geoffrey van Bolderen

22 mei 2019

Graduation committee

em. Prof.ir. F.S.K. Bijlaard, TU Delft Ir. P.A. de Vries, TU Delft Prof.dr. I.M. Richardson, TU Delft

Outline

- Introduction 3D-Printing
- Background Research
- Methodology
- Results
- Conclusions
 - Opportunities

MX3D

- Challenges
- Discussion

Introduction

Additive Manufacturing

- Enables production of complex shapes
- Topology optimisation > Optimal material layout
- Reduces material use, waste and transport costs
- Mass customisation and fast construction
- Printing Techniques

Powder based (sintering)

MX3D

• Wire arc additive manufacturing

WAAM: Ramlab, Damen

- → Low deposition rates
- → Print outside the box

Structural applications

Introduction

MX3D Bridge

- Pedestrian bridge in city center of Amsterdam (exp. 2018)
- 12 meter span, 6.3 meters wide.
- WAAM, stainless steel (308LSi)
- Smart bridge live monitoring of bridge `health'
- Goal: fully autonomous on-site robotic printing

Introduction

Introduction

Background

Methodology

Results

Conclusions

Discussion

Background

Printing Process

- 15 columns in total
 - (D = 30.1 mm 3.2 to 3.7 mm thick)
- Dot-by-dot & continuous printing
- Properties process dependent Cooling rate

MX3D

TUDelft Delft University of Technology

Introduction

Background

Background

Methodology

Results

Conclusions

Discussion

Methodology

Characterization of Geometry (1)

- Hand & Fluid Measurements,
- 3D-scanning

- Out-of-straightness
- Surface roughness
- Weight/Length
- Average cross-section
- Density

Introduction
↓
Background
↓
Methodology
↓
Results
↓
Conclusions
↓
Recommendations

Methodology

Material Properties – Buckling Tests

- Tubular column lengths: 450 1250 mm
- Lateral deflections: 6 linear displ. sensors
- Effective system length

Introduction

Background

Background

Methodology

Results

Conclusions

Discussion

Geometrical Properties

• Out-of-straightness e_0 affected by local misaligned print layers: average $e_0 = L/650 >> e_0 = L/1000$ (EC3)

- Average cross-section: OD 33.8-3.7 mm (dot) and OD 33.3-3.2 mm (cont.)
- Density ranged 7.91-7.94 kg/m³

MX3D

TUDelft Delft University of Technology

Material Properties - Metallography

- Large columnar grain structures —> anisotropy & ductility
- Locally coarser grain structures \longrightarrow strength
- Oxide inclusions & porosity → ductility & strength
- Dot-by-dot printing: more inclusions

Introduction

Background

Background

Methodology

Results

Conclusions

Discussion

Material Properties – Tensile Tests (1)

Tensile Test Results - Dot-by-Dot

Background
Background
Methodology
Results
Conclusions
Discussion

Introduction

Material Properties – Tensile Tests (2)

Tensile Test Results - Continuous

Introduction

Background

Background

Methodology

Results

Conclusions

Discussion

• $\gamma_{M} = 1.1$

Material Properties – Buckling Tests

Buckling Test Results

Conclusion

What are relevant geometrical and material properties of 3D-printed steel to assess the stability of wire and arc additively manufactured stainless steel tubular columns?

- Printing process is very much effecting structural properties
- Existing buckling curve not applicable for WAAM tubular columns
- Proposed curve for WAAM columns
 - first step towards full understanding of buckling of WAAM tubular columns and a safe stability calculation model for structural applications
- Knowledge on both material and the printing process is required to leverage the full potential of 3D printing for construction

Conclusions

TUDelft Delft University of Technology

What is next? – Opportunities

MX3D

- Government Strategy, achieving sustainability goals using AM:
 - UK / Dubai: 3D-print 25% of all structures in 2030.
- Increasing Investments and revenues of/for Global Construction Industry

Conclusions

What is next? – Opportunities

METAL CURVED PANELS, MX3D AMSTERDAM

MX3D

CFRP-PRINTING, CEAD DELFT

What is next?

3D-Printen, dé toekomst of een hype?

Introduction Background Methodology Results Conclusions Discussion

Additive Manufacturing for Construction Industry

Exploration of Stability of 3D-Printed Steel Members

Dag van de Constructeur

Geoffrey van Bolderen

22 Mei, 2019

Introduction

Additive Manufacturing - Applications

MX3D

8 x 3.5 m TU/e, BAM October 2017

Introduction

Background

Background

Methodology

Results

Conclusions

Discussion

BAM INFRA/TU EINDHOVEN

The **key innovation** in the design

Mashable